
Technological Feasibility Analysis
8 November 2019

Sponsors
Dr. Kiona Ogle
Dr. Michael Fell

Mentor
Isaac Shaffer

TreeViz
Riley McWilliams

Qi Han
Haitian Tang

Daniel Rustrum
Alex Bentley

Contents

Introduction 3
Background 3
Problem 3
Solution 3
Document Purpose 3

Technological Challenges 4
Client Requirements 4

Technology Analysis 5
Design Decision 1: ReST Framework 5

CherryPy 6
Falcon 7
Flask 7
Final Decision 8

Design Decision 2: Tree Visualization 9
Unity 10
CreateJS 10
Threejs 11
Final Decision 12

Design Decision 3: Web Development Service 13
Angular 14
React 15
Vue.js 16
Final Decision 17

Design Decision 4: Backend Database 18
MongoDB 18
MySQL 19
Redis 19
Final Decision 20

Design Decision 5: Host Environment 21
Local NAU Desktop 21
Heroku 22
Firebase 22
Final Decision 23

Technology Integration 24

Conclusion 26

References 27

1

Introduction

Background
To better understand how certain factors affect trees, Dr. Kiona Ogle of Ogle Labs developed a
simulation that shows a tree’s growth over time. The simulation is called the Allometrically Con-
strained Growth and Carbon Allocation (ACGCA) model.

Problem
The problem is that the model is currently built in a way that severely limits who can use it. The
main user demographic that Dr. Ogle built the model for is biologists and requires the user to
know some programming because it runs using command line prompts. The model outputs raw
data as text and does not visually represent the tree's life cycle. Dr. Ogle wants the model to be
utilized by more than biologists and not just for lab research. For example, students in a class-
room should be able to use it and learn how certain factors may determine how a tree grows.

Solution
Team TreeViz, consisting of the members: Riley McWilliams, Alex Bentley, Daniel Rustrum, Hait-
ian Tang, Qi Han, and mentor: Isaac Shaffer, is tasked with making the model more user-friend-
ly. This will be completed in two major parts: input and output. First, the input process will have
to be more streamlined. We will create a web application with an easy-to-use graphical inter-
face. Instead of entering input through a command line, users will enter all of the necessary data
in text boxes and drop-down menus. Second, the output will be converted into a graphical rep-
resentation of a tree. With our user-friendly web application and visually appealing representa-
tion of tree growth, Dr. Ogle’s model can reach a much broader audience.

Document Purpose
The purpose of this document is to figure out which technologies we will be using to build our
final product. We broke the project down into five design decisions, each needing a certain type
of technology to solve its specific problem. Our goal for this document is to consolidate our re-
search and organize it for comparison. Then we will decide the best technology according to
important factors that satisfy client requirements.

2

Technological Challenges
In this section, we list out all of the technological needs that our final product requires. The pur-
pose is to clearly show which problems need to be solved. We must make our decisions based
on certain requirements that the Dr. Ogle has specified.

Client Requirements
Dr. Ogle has requested a user-friendly platform for tree visualization. She wants a web applica-
tion that makes it easier for users to enter parameters to her simulation. Then, the results
should be visualized as a graphical representation of a tree. She also wants a way to keep track
of user information such as name and occupation. Finally, there needs to be an environment to
host the web application.

To deliver the product that our client requests, we separated her requirements into five design
decisions:

● Design Decision 1: ReST Framework
The ReST API acts as a bridge from the user interface to the ACGCA model. The
framework ensures that we implement the ReST API correctly and promptly. We
need a modular framework so that we can isolate complex functional parts according
to the requirements and processes established with Dr. Ogle.

● Design Decision 2: Tree Visualization
A key component of this project is the visualization of trees based on the ACGCA
model’s output parameters. While the client does not specify nor prefer a specific-
looking output, we must decide on a visualization tool. Variables like trunk radius,
tree height, and leaf density must be taken into account when choosing a software.

● Design Decision 3: Web Development Service
A framework or library for the website is needed to develop the web-facing applica-
tion. It also must contain all of the necessary code and dependencies for the visual-
ization software to run on the internet. The type of service is not specified by the
client but needs to run quickly and efficiently to create a suitable application.

● Design Decision 4: Backend Database
A database is needed to store information about the users, including name, affilia-
tion, location, and purpose. It also needs to contain the necessary information to de-
termine whether the user is new or not. To satisfy Dr. Ogle's requirement for storing
user information, we must find a suitable database.

● Design Decision 5: Host Environment
Dr. Ogle envisions this application to be easily accessible by hosting it on the inter-
net. Finding a stable and fast host environment is necessary to reach a broader au-
dience.

3

Technology Analysis
In this section, we look at each of the five design decisions and showcase a handful of possible
solutions that address each problem. Careful consideration is put into each option, and research
and analysis are done in order to pick the best fit for our final product.

Design Decision 1: ReST Framework
We need to create a Representational State Transfer (ReST) application program interface
(API) that is able to act as an interface. It should allow and support our business logic to work
independently and mimic the structure of our architectural diagram, as shown in Figure 2.

Using this structure we can send/receive data to and from instances of the model without need-
ing to orchestrate them, worry about how they are being run, or where they are being run from.
The model simply needs to send a request to the ReST API whenever it can process another
input or when it needs to send the data that it has processed.

Performance isn’t a factor that is important to consider for a couple of reasons, our expected
load on the ReST API is expected to be around 30-50 people at once which can be handled by
any standard web framework. As the API scales and starts to receive more users than expected
bottlenecks will appear, but with load testing these problems can be addressed when they start
to happen[1]. It doesn’t matter what framework we choose because they are guaranteed to hap-
pen anyway.

To guide our research of ReST APIs, we focused on a handful of important factors:

I. Supported
Software being supported is whether or not the latest release is within the last three
months and has had at least two frequent releases before that. It is important to use a
framework that will continue to receive updates. Otherwise, it might become depreciated.
This will be measured with either a yes (it has recent releases) or no (it does not have
recent releases).

II. Modular
Modularity is determined by two things: whether or not the framework interferes with
testing and debugging without using their provided method, and whether or not you are
getting any optional features that aren't required for a ReST API. Both of these criteria
need to be met for it to be considered modular. This is important because it allows us to
ensure that the application we are creating has a minimal amount of bugs. This will be
measured with either a yes (it is modular) or no (it is not modular).

4

III.Hard-Coded
A software option being hard-coded is determined by whether or not the framework re-
quires you to hardcode data without giving a viable alternative. Hard-coded variables
can provide problems when extracting information into a configuration file/object. This
will be measured with either a yes (it does require hard-coding) or no (it does not re-
quire hard-coding).

IV.Has Dependencies
Dependency is determined by whether or not the framework requires an external re-
source in order to use it. Fewer dependencies mean there is less for our client to main-
tain. We will measure this with either a yes (it has dependencies) or no (it does not have
dependencies).

To determine the best technology to use for our project, we researched three possible software
for a ReST API. To test each option according to the factors, we made a simple demo. We also
referenced pypi[2] for details about the framework and the documentation that the framework
provides.

1) CherryPy
CherryPy is a barebones web framework written in python. CherryPy’s philosophy is
that everything that is optional is turned off by default and that extending the framework
should be as easy as writing a function.[3]

Here is how CherryPy holds up against the factors:

I. Supported
Yes, CherryPy is supported. It has frequent releases, the most recent being re-
leased on November 3rd, and two more before that on October 2nd and Sep-
tember 3rd.

II. Modular
Yes, CherryPy’s endpoints are made up of plain Python objects which means
that they can be tested individually apart from the framework. CherryPy also has
isolated objects that either contain functionality or information. The information is
freely available to use and the functionality can be overridden or inherited for a
customized experience.

III.Hard-Coded
No, CherryPy is not hard-coded. While it does use decorators, an architectural
pattern that Python has implemented allowing you to wrap functionality with func-
tionality, it does the wrapping during load time and not during runtime. CherryPy
provides an alternative way of using them.

5

IV.Has Dependencies
No, CherryPy has no dependencies. This means it is fully capable of handling
HTTP requests and sending HTTP responses on its own. It can also handle
opening ports up to the internet and running a web server.

2) Falcon
Falcon, written in Python, is a ReST specific framework, meaning it is not able to deliver
files, or stream data, etc. However, due to its limitation, it constrains you to only having a
ReST API.[4]

Here is how Falcon holds up against the factors:

I. Supported
No, Falcon is not supported. The last three releases that Falcon has had were
on April 29th, 2019, January 16th, 2018, and September 6th, 2017.

II. Modular
Yes, Falcon is modular. Unlike CherryPy, it is able to achieve this by having the
user pass the function they want to be called to the framework. It provides a sep-
aration between the framework and its implementation, allowing for the function-
ality to be tested individually while also allowing the user to “hook” into processes
that may otherwise be hidden. Falcon also uses generic Python objects to create
and define the endpoint from a given path.

III.Hard-Coded
Yes, Falcon is hard-coded. Due to how the hooks in Falcon are implemented,
the parameters that need to be passed to the function must be hard-coded. This
is because data is passed to the function during load time instead of during run
time when variables can be used.

IV.Has Dependencies
Yes, Falcon does have dependencies. It relies on an external package to start a
web server. However, it can handle HTTP requests and HTTP responses on its
own.

3) Flask
Flask is the least lightweight framework out of the three options. It is also one of the
most popular HTTP frameworks to use. Due to that reason, it has evolved into some-
thing that is able to handle multiple use cases, one of those being a ReST framework.[5]

6

Here is how Flask holds up against the factors:

I. Supported
No, Flask is not supported. The latest was on July 8th, 2019, more than 3
months ago. The two releases before that were on July 4th, 2019 and May 17th,
2019.

II. Modular
No, Flask is not Modular. It wraps the framework on its own using decorators.
This means that we would need to either pull away that abstraction ourselves or
use the testing functionality that Flask provides.

III.Hard-Coded
Yes, Flask is hard-coded. It requires the paths and methods to be hard-coded
into the script. This means we will not be able to manipulate that information with
variables or be able to extract that information with configurations.

IV.Has Dependencies
No, Flask does not have any dependencies. Like CherryPy, it is able to handle
the HTTP requests and HTTPS responses required for the ReST API. It can also
handle exposing the API to the internet by managing the ports and running the
webserver.

Final Decision
Table 1 compares the three options based on our analysis according to the factors.

Table 1: DD1 Results

We chose CherryPy because, overall, it fits best for what we are looking for. It is supported,
modular, not hard-coded, and does not require any dependencies to run. Its modularity and
maintainability will help move towards our goal for a ReST Framework.

CherryPy Falcon Flask

Supported Yes No No

Modular Yes Yes No

Hard-Coded No Yes Yes

Has Dependencies No Yes No

7

Design Decision 2: Tree Visualization
We need a way to create graphical trees based on the input that a user enters. These trees
should be dynamically created from the output of the ACGCA simulation and be similar to the
real-life tree they represent.

To guide our research in tree visualization, we focused on a handful of important factors:

I. File Size
The file size is the amount of storage that will be taken up on the server. We will have a
limited amount of server storage space; therefore, we do not want the build to take up
too much of it. This will be measured in kilobytes.

II. Boot-Time
The boot time is the amount of time from when the webpage is accessed to when the
user can interact with it. We do not want users to have to wait long periods of time to use
the application. This will be measured in seconds.

III.Performance
Performance is the amount of activity the webpage has. This is important because a
lower-end computer may not be able to handle the amount of activity that the software
requires. To measure this, we will run each demo for 60,000 milliseconds (ms) and
record how much of that time was spent performing actions.

IV.Familiarity
Familiarity is how many team members have some experience with the software. The
team can work more effectively if there is a higher familiarity. This will be measured in
the number of members who are familiar with the software out of five.

V. Built-in Compatibility with the ACGCA Model
Built-in compatibility is whether or not the software has built-in tree creation functionality.
If not, then we would have to create the trees with our own algorithm. We will measure
this with either a yes (it has compatibility) or no (it does not have compatibility).

8

To determine the best technology to use for our project, we tested three possible software with
tree visualization capabilities:

1) Unity
Unity is a popular game development engine with a built-in 3-dimensional tree creator. It
uses a rendered scene to place objects and UI elements, and C# scripts for logic.[6]

To test Unity’s capabilities in tree visualization, we created a demo using its built-in tree
maker. The demo consists of a text file is that is created based on user input. Then a
tree is formed based on the data in the text file. It was very easy to get Unity to run on a
web browser. There are settings to build the project in WebGL, and strip unnecessary
imports such as the physics engine, allowing for smaller builds. It took approximately two
hours to make this demo.
Demo: https://dana.ucc.nau.edu/~rcm264/TreeViz/Unity-demo/index.html

Here is how Unity holds up against the factors:

I. File Size
Unity has a build size of 7,400 kilobytes.

II. Boot-Time
It takes about 2-4 seconds for the webpage to become intractable by the user.
This is due to Unity having a splash screen that lasts 2 seconds.

III.Performance
When ran for 60,000ms, the Unity demo had 34,545ms of activity.

IV.Familiarity
3 members of the group are familiar with Unity.

V. Built-in Compatibility with the ACGCA Model
Yes, Unity has built-in functions that can be directly related to the output of the
ACGCA model. This includes a built-in tree creator with variables such as trunk
and branch radius.

2) CreateJS
CreateJS is a suite of JavaScript plug-ins that make creating a simple web application
easy. One of the plug-ins, EaselJS, has a canvas where objects are drawn and ren-
dered.[7]

To test CreateJS's capabilities in tree visualization, we created a simple demo. The
demo displays a very simple 2D tree made of a rectangle for the trunk and a triangle for
the leaves. The basic shapes were easy to make and it was easy to place them where
we wanted. It took approximately an hour to make this demo.

Demo: https://dana.ucc.nau.edu/~rcm264/TreeViz/CreateJS-demo/index.html

9

https://dana.ucc.nau.edu/~rcm264/TreeViz/Unity-demo/index.html
https://dana.ucc.nau.edu/~rcm264/TreeViz/CreateJS-demo/index.html

Here is how CreateJS holds up against the factors:

I. File Size
CreateJS has a build size of 8,100 kilobytes when only using EaselJS. If we
want to use the other three libraries, it will total 34,000 kilobytes.

II. Boot-Time
It takes less than a second for the webpage to become intractable by the user
when running CreateJS.

III.Performance
When ran for 60,000ms, the CreateJS demo had 108ms of activity.

IV.Familiarity
2 members of the group are familiar with CreateJS.

V. Built-in Compatibility with the ACGCA Model
No, CreateJS does not have built-in functions that can be directly related to any
outputs of the ACGCA model.

3) Threejs
ThreeJS is a JavaScript plug-in that is similar to CreateJS. However, it focuses more on
three-dimensional rendering. It also uses a canvas to draw and render objects.[8]

To test ThreeJS’ capabilities in tree visualization, we created a simple demo. The demo
displays a very simple 3D tree made of a cylinder for the trunk and a cone for the leaves.
The syntax for creating these shapes was somewhat difficult to figure out at first, but we
eventually got it working. It took approximately an hour to make this demo.

Demo: https://dana.ucc.nau.edu/~rcm264/TreeViz/ThreeJS-demo/index.html
Here is how ThreeJS holds up against the factors:

I. File Size
ThreeJS has a build size of 1,100 kilobytes.

II. Boot-Time
It takes less than a second for the webpage to become intractable by the user
when running ThreeJS.

III.Performance
When ran for 60,000ms, the ThreeJS demo had 10,747ms of activity.

IV.Familiarity
1 member of the group is familiar with ThreeJS.

10

https://dana.ucc.nau.edu/~rcm264/TreeViz/ThreeJS-demo/index.html

V. Built-in Compatibility with the ACGCA Model
No, ThreeJS does not have built-in functions that can be directly related to an
output of the ACGCA model.

Final Decision
Table 2 compares the three options based on our analysis according to the factors.

Table 2: DD2 Results

We chose Unity as our technology for tree visualization. Our choice is based on the fact that it
has more built-in compatibility with the ACGCA model than the other options. More group mem-
bers are also familiar with the software.

We will test Unity further by creating trees based on an increasing amount of the ACGCA mod-
el's outputs. This will allow us to incrementally build-up to a tree that is fully representative of the
model's output.

Unity CreateJS ThreeJS

File Size 7,430 kb 33,956 kb (whole suite)
8,114 kb (EaselJS only)

1,188 kb

Boot-Time ~ 3 s < 1 s < 1 s

Performance 34,545 ms 108 ms 10,747 ms

Familiarity 3 members 2 members 1 member

Built-in Compatibility yes no no

11

Design Decision 3: Web Development Service
A large part of this project is the interaction between the user and our service. A web framework
or library needs to exist within the program to be able to mediate the information between the
client-side and the server/algorithmic side.

To guide our research in front-end web development, we focused on a handful of important fac-
tors:

I. Time to Load
The time to load is the initial script bootup time (see Figure 1) it takes for the webpage to
load. Speed is a crucial part of the internet, and to keep a user’s attention we will need a
service that takes the least amount of time to load the webpage. This will be measured
in milliseconds (ms).

II. Familiarity
Familiarity is how many team members have some experience with the software. The
team can work more effectively if there is a higher familiarity. This will be measured in
the number of members who are familiar with the software out of five.

III.Type
Type is whether or not the technology chosen is a library or a framework. We will need to
know if the extra complexity of a library is necessary for our product. The factor is mea-
sured on whether the type of service is a ‘library’ or a ‘framework’.

IV.File Size
File size is the size of the framework and all of its dependencies. The size is an impor-
tant factor to consider because it will determine how much data is being transferred over
a network. This will be measured in bytes.

12

Figure 1 is a graphic of the results from a js-framework-benchmark developed by Stefan Krause
and was used to determine the results of some factors.

Figure 1: js-framework-benchmark [13]

To determine the best technology to use for our project, we tested three possible software for
front-end web development:

1) Angular
Angular is a popular web development framework maintained by Google for designing
dynamic web applications and is the oldest of the three services that were tested.[9]

 A simple server was created using Angular to test the difficulty of the setup process.
Setting up Angular is an easy thing to do, with downloading the service and creating an
environment taking about 15 minutes. Angular handles all of the necessary dependen-
cies and routing when creating a new project. Creating an Angular environment makes
routing easy and webpages easier to work with because pages update every time the
HTML file is saved. The amount of files that are installed in a basic setup of Angular is
large and can be difficult to navigate, which can add unnecessary complexity to our pro-
gram.

13

Here’s how Angular holds up against the factors:

I. Time to Load
The time it takes to boot the initial scripts for Angular is the slowest based on the
results from Figure 1, Angular takes about 45.9 ± 1.5 ms.

II. Familiarity
3 members of the group are familiar with Angular.

III.Type
Angular is a framework.[12]

IV.File Size
The file size of the Angular packet to be transmitted over a webpage is around
304,139 bytes according to Figure 1, which is relatively large compared to the
other services available.

2) React
React is a library for building user interfaces and was designed and currently maintained
by Facebook for updating web pages rapidly when changing data objects within a web-
page.[10]

A simple server was created using React to test the difficulty of the setup process.
While testing, React proved to be very simple to set up as well as modify data. The
whole process took approximately 15 minutes. The environment was very similar to set-
ting up the environments of Vue.js and Angular. The difficulty of React was that be-
cause it was a library it was much harder to navigate files as well as change the envi-
ronment. It needed more hard-coding because it needed to be told exactly what to do.

Here’s how React holds up against the factors:

I. Time to Load
React has a much faster script bootup time than Angular according to Figure 1.
React has an initial boot time of 22.0 ± 0.6 ms, making this a very fast library for
websites.

II. Familiarity
 2 members of the group are familiar with React.

III.Type
React is a JavaScript library.[12]

IV.File Size
The file size of the React packet to be transferred over a network is approximate-
ly 263,076 bytes according to Figure 1.

14

3) Vue.js
Vue.js is an open-source JavaScript framework that was developed by Evan You, who
was an old Angular team member. The goal of Vue.js was to create a new framework
that combined the best approaches to front-end web development.[11]

A simple server was created using Vue.js to test the difficulty of the setup process.
Vue.js was slightly harder to set up compared to the other two services. It required more
information for the initial setup, such as determining a unit testing program, the
stylesheet formats, etc. The amount of options gives us more control over the initial set-
up for Vue.js compared to Angular and React. The environment is still easy to use and
was able to be set up in approximately 15 minutes.

Here’s how Vue.js holds up against the factors:

I. Time to Load
Based on figure 1, Vue.js is faster to load than the previous two options with an
initial boot time of 19.6 ± 0.9 ms.

II. Familiarity
2 members of the group are familiar with Vue.js.

III.Type
Vue.js is a JavaScript Framework.[12]

IV.File Size
The file size of the Vue.js packet is approximately 221,610 bytes according to
Figure 1, making Vue.js the smallest transfer size.

15

Final Decision
Table 3 compares the three options based on our analysis according to the factors.

Table 3: DD3 Results

Vue.js is our choice because it does not require many features for us to be able to set up the
ACGCA model. The file size and time to load benchmark results prove Vue.js to be the fastest
out of all the options and the most lightweight. Although more team members are familiar with
Angular, TypeScript and JavaScript are languages the team knows and will provide a small bar-
rier of entry when working with Vue.js.

Angular React Vue.js

Time to Load 45.9 ± 1.6 (ms) 22.1 ± 0.6 (ms) 20.8 ± 0.7 (ms)

Familiarity 3 members 2 members 2 members

Type Framework Library Framework

File Size 304,134 bytes 263,076 bytes 221,610 bytes

16

Design Decision 4: Backend Database
We need a backend database that allows us to store user data. The database needs to be ac-
cessible by administrators so they can view the data. Dr. Ogle does not want a large variety of
user data, so we only need a simple database.

To guide our research on databases, we focused on a handful of important factors:

I. Time to Set Up
The time to set up is the speed of creating the database. This is important the database
may crash, and we need to be able to rebuild it quickly. This will be measured by the
amount of time spent making a demo from the beginning to the end, including the time
spent downloading the software.

II. Familiarity
Familiarity is how many team members have some experience with the software. The
team can work more effectively if there is a higher familiarity. This will be measured in
the number of members who are familiar with the software out of five.

III.Type
The type of database is whether the database is dynamic or static. This matters because
it could determine whether or not we need more operations to achieve the same pur-
pose. If the database is dynamic, it means that the structure is flexible and that we can
easily make changes to it. A static database needs more operations to make the same
changes.

To determine the best technology to use for our project, we tested three possible software for a
backend database:

1) MongoDB
MongoDB is a document database that is based on the web. This allows users to more
efficiently access and build the database. Because MongoDB is NoSQL, when we use
it, we do not need to consider complex tables and relationships between them.[14][15]

To test whether MongoDB is the best choice for us, we built a demo for storing data
from the web.

Here’s how MongoDB holds up against the factors:

I. Time to Set Up
It took about 2 minutes to build the demo. MongoDB does not require a down-
load.

II. Familiarity
3 members of the group are familiar with MongoDB.

17

III.Type
MongoDB is the dynamic database that allows the users to flexibly add or delete
the document contains data.

2) MySQL
MySQL is a relational database management system based on SQL – Structured
Query Language. It focuses on the relationship between tables and when you
make any changes, you need to also change all the tables related.[14]

 Here is how MySQL holds up against the factors:

I. Time to Set Up
It took about 5 minutes to build the demo for MySQL including download cost. It
is simple to create a MySQL database with the MySQL language especially when
the size of data is not very large.

II. Familiarity
4 members of the group are familiar with MySQL.

III.Type
MySQL is a static database because the information stored in it is structured as
tables connected with others.

3) Redis
Redis is a key-value database and supports data structures such as strings, hashes,
lists, sets, sorted sets with range queries, bitmaps, hyperlogs, geospatial indexes with
radius and streams.[14]

 Here is how Redis holds up against the factors:

I. Time to Set Up
It took 2 minutes to download it and 10 minutes to build a demo. The total cost
time is 12 minutes.

II. Familiarity
1 member of the group is familiar with Redis.

III.Type
 Reids is a dynamic database and it is a NoSQL language.

18

Final Decision
Table 4 compares the three options based on our analysis according to the factors.

Table 4: DD4 Results

We chose MySQL because there isn't much difference between these three candidates. We
preferred MongoDB for its access to the web, but Dr. Ogle doesn’t need more than 5 variables
to be stored in the database. In this case, MySQL is the best choice. It is easy to use and won't
have any complex relationships.

MongoDB Mysql Redis

Time to Set Up 2 minutes 3 minutes 12 minutes

Familiarity 3 members 4 members 1 member

Type Dynamic Static Dynamic

19

Design Decision 5: Host Environment
Although we can do the development on our computers, we can not run our personal computers
all the time to use them as the server of our project. So, we need to find a stable host environ-
ment that can run our program and communicate with the end user's browser.

To guide our research on host environments, we focused on a handful of important factors:

I. Storage
Storage is the amount of space within the environment to store the user information and
our project. This is important because it helps us ensure our web application is running
with no exceptions and receives the user data at the same time. Dr. Ogle wants us to
control the budget to be as low as possible, we will measure this with the storage space
based on the lowest plan tier of each service.

II. Price
Price is the amount of money that each web service will cost per month. This is impor-
tant because our budget is limited and Dr. Ogle wants us to keep the budget as low as
possible. We will measure this with the price per gigabyte of storage.

III.Reliability
Reliability is whether or not the chosen server will crash frequently. This is important be-
cause we do not want our web application to crash while being used. Reliability will be
measured based on the number of recorded incidents in the last 60 days.

To determine the best technology to use for our project, we researched three possibilities for a
hosting environment.

1) Local NAU Desktop
Local NAU Desktop is a computer located in the School of Informatics, Computing &
Cyber Systems building. Dr. Ogle will provide a basic machine for us to run as a server,
which we can set up any way we like. It is a basic choice for a server that can run all the
time and provide services to our end users.

Here is how Local NAU Desktop holds up against the factors:

I. Storage
The storage of the local desktop is fixed and it can not be upgraded. Because Dr.
Ogle is still preparing the local desktop, the storage is unknown for us.

II. Price

It is free if we choose to use Local NAU Desktop, but it can not be upgraded if
we want more storage or faster process.

20

III.Reliability
As Dr. Ogle is still preparing the Local NAU Desktop, we don’t know if it is reli-
able or not right now.

2) Heroku
Heroku is a cloud platform supporting several programming languages including Java,
Node.js, Scala, Clojure, Python, PHP, and Go. It is a polyglot platform as it has features
for us to build, run and similarly scale applications across most languages. It doesn't of-
fer web storage hosting. It only provides the service to run our web program.[16]

Here is how the Heroku server holds up against the factors:

I. Storage
Heroku doesn’t offer hosting storage services. We need to use Github to store
our project and use Heroku to run our project. The lowest tier for GitHub storage
is 1GB which is also the free tier.

II. Price
The price of using Heroku has two parts. One part is the price for Heroku, the
other part might come from GitHub storage if we use more than 1 GB storage in
the future. Heroku does offer the free tier but the server will sleep after 30 min-
utes of inactivity. The higher tier which needs $7/month for Heroku offers 10
process types instead of 2 process types for the free tier. The higher tier also
keeps the system always active.[17] Table 5 shows the price options for GitHub.

Table 5: Github Price[18]

III.Reliability
Heroku reports that the service has had about 12 recorded incidents in the last
60 days.[19]

3) Firebase
Firebase is a mobile and web app development platform that provides a variety of de-
veloping tools and web server service which can provide us a stable online server. [21]
Here is how Firebase web server holds up against the factors:

I. Storage
The storage space for the lowest tier which is also the free tier is 1GB.

Amount

Basic Storage Data 1 GB

Extra Storage Data 50 GB for $5/month

21

II. Price
Firebase web server offers a free level when the amount of the transferred data
is under 10GB per month and the amount of storage data is under 1GB per
month. Our project might mainly transfer some statistical data for input and some
picture data for the output, so it might be enough for our project. For upgrading
the amount of storage, it only needs 0.026 dollars per GB per month.[22] Table 6
shows the price options for Firebase.

Table 6: Firebase Price

III.Reliability
Firebase has reported having had 4 recorded incidents in the last 60 days.[20]

Final Decision
Table 7 compares the three options based on our analysis according to the factors.

Table 7: DD5 Results

We chose a Local NAU Desktop because we want the budget to be as low as possible in the
early stages of development. Its storage will not be a big problem as our project might not have
a high requirement for it. In the future, as we need a more secure, stable, and accessible server,
we might consider using other options.

We will test this option further by operating our project directly on the Local NAU Desktop.

Free Plan Pay As You Go

Storage Data 1 GB $0.026/GB

Transferred Data 10GB /month $0.15/GB

Local NAU Desktop Heroku Firebase

Price for the Lowest
Tier

Free Free for the lowest tier Free for the lowest tier

Basic Storage Unknown 1 GB 1 GB

Price for Upgrading
Extra 1GB Storage

Can not upgrade 5 dollars/month 0.026 dollars/month

Accessibility to the
User Data

Anytime Need to request and
wait

Need to request and
wait

Reliability Unknown 12 incidents 4 incidents

22

Technology Integration
The challenge we face is separated into three parts: whether the algorithm can be run quickly or
in parallel, how fast we can get users to and from the algorithm process while also validating
and gating undesirable inputs, and whether we are able to gather the algorithm inputs and dis-
play the outputs.

Figure 2: Architecture Diagram

The first solution for the algorithm problem is to cut off the algorithm from running too long and
to allow each instance of the wrapped algorithm to contribute to converting users and running
their inputs separately. This allows the algorithm to run in parallel allowing multiple instances to
chip away at the input queue. The manager that the algorithm is wrapped in manages the inputs
and outputs of the algorithm, manages the runtime of the algorithm, and sends and receives
data from the user data structures.

The second problem is getting the data provided by users, filtering undesirable inputs, then
putting the inputs into a queue for the algorithm to request, then sending the results back to the
appropriate user. The solution is an architected process that can handle the user throughput
and be able to queue the process in order for the algorithm to request another user.

23

The third problem, to gather user inputs and display the algorithm results, is solved with the
Model-View-Controller design pattern where the controller is the process that the second prob-
lem’s solution details. This way, the solution doesn’t depend on what the user interface looks
like, allowing that freedom in design. The user data is sent to the algorithm through the model
and the results are retrieved through the view. Vue.js will handle the user interface and input.
Then Unity, which will be built straight into the HTML, will display the output as a 3-dimensional
tree.

The Interfaces that are denoted as <I> in blue in Figure 2 are where the Rest API will sit, mean-
ing that operations that happen in the model and the view are completely independent of each
other, and never directly interact.

24

Conclusion
The overall skeleton of the project will be made up of the Pythonic CherryPy web framework as
well as the front-end web framework, Vue.js, for handling the JavaScript and TypeScript of the
actual webpage. The Unity engine for 3D modeling will be used to create the actual visualiza-
tion of the tree growth, which will be embedded in Vue.js. MySQL will be used to store user in-
formation in order to track a user's interaction with our web application. We will host this applica-
tion on a local NAU desktop provided by Dr. Ogle and her team.

Table 8 shows our chosen option for each design decision, as well as our confidence in making
the decision.

Table 8: Chosen Technology Results

Team TreeViz will be working with Dr. Kiona Ogle to create a user-friendly platform for visualiza-
tion tree growth. This will take the form of a web application that runs her simulation to create a
visual model of a tree's lifespan. Through the research and analysis that the team completed in
this document, we were able to choose the technology that fit best for each design decision. We
weighed the options and can say with high confidence that we made all the right choices.

Chosen Technology Confidence Level

ReST Framework CherryPy High

Tree Visualization Unity High

Web Development Service Vue.js High

Backend Database MySQL High

Host Environment Local NAU Desktop High

25

References
Design Decision 1: Rest Framework

1. https://medium.com/rpdstartup/rest-api-performance-tuning-getting-started-7a6efe-
fa9e20
2. https://pypi.org/
3. https://cherrypy.org/
4. https://falconframework.org/
5. https://palletsprojects.com/p/flask/

Design Decision 2: Tree Visualization
6. https://unity.com/
7. https://createjs.com/
8. https://threejs.org/

Design Decision 3: Web Framework
9. https://www.sitepoint.com/angular-introduction/
10. https://reactjs.org/
11. https://vuejs.org/v2/guide/
12. https://hackernoon.com/angular-vs-react-vs-vue-which-is-the-best-choice-
for-2019-16ce0deb3847
13. https://jsreport.io

Design Decision 4: Backend Database
14. https://blog.csdn.net/CatStarXcode/article/details/79513425
15. https://www.mongodb.com

Design Decision 5:Host Environment
16. https://www.heroku.com/about
17. https://www.heroku.com/pricing
18. https://github.community/t5/How-to-use-Git-and-GitHub/What-are-the-pricing-plans-for-
Git-LFS-Is-there-something-better/td-p/2622
19. https://status.heroku.com/
20. https://status.firebase.google.com/summary
21. https://firebase.google.com/products
22. https://firebase.google.com/pricing /

26

https://medium.com/rpdstartup/rest-api-performance-tuning-getting-started-7a6efefa9e20
https://medium.com/rpdstartup/rest-api-performance-tuning-getting-started-7a6efefa9e20
https://medium.com/rpdstartup/rest-api-performance-tuning-getting-started-7a6efefa9e20
https://pypi.org/
https://cherrypy.org/
https://falconframework.org/
https://palletsprojects.com/p/flask/
https://unity.com/
https://createjs.com/
https://threejs.org/
https://blog.csdn.net/CatStarXcode/article/details/79513425
https://www.heroku.com/about
https://www.heroku.com/pricing
https://github.community/t5/How-to-use-Git-and-GitHub/What-are-the-pricing-plans-for-Git-LFS-Is-there-something-better/td-p/2622
https://github.community/t5/How-to-use-Git-and-GitHub/What-are-the-pricing-plans-for-Git-LFS-Is-there-something-better/td-p/2622
https://github.community/t5/How-to-use-Git-and-GitHub/What-are-the-pricing-plans-for-Git-LFS-Is-there-something-better/td-p/2622
https://firebase.google.com/products
https://firebase.google.com/pricing

	Introduction
	Background
	Problem
	Solution
	Document Purpose

	Technological Challenges
	Client Requirements

	Technology Analysis
	Design Decision 1: ReST Framework
	CherryPy
	Falcon
	Flask
	Final Decision

	Design Decision 2: Tree Visualization
	Unity
	CreateJS
	Threejs
	Final Decision

	Design Decision 3: Web Development Service
	Angular
	React
	Vue.js
	Final Decision

	Design Decision 4: Backend Database
	MongoDB
	MySQL
	Redis
	Final Decision

	Design Decision 5: Host Environment
	Local NAU Desktop
	Heroku
	Firebase
	Final Decision

	Technology Integration
	Conclusion
	References

